“Be kind, for everyone you meet is fighting a hard battle” - Often attributed to Plato but likely from Ian McLaren (pseudonym of Reverend John Watson)
Showing posts with label kilowatt hour. Show all posts
Showing posts with label kilowatt hour. Show all posts

Tuesday, July 30, 2013

A quick note on the eGallon

Screen shot of my results from DOE eGallon site
In a previous post I mentioned the eGallon concept from a Department of Energy (DOE) web site. It purports to tell a visitor how much he or she would pay to drive as far in an electric vehicle as a gallon of gas takes them in an "average vehicle." It breaks down only as far as by state (or U.S. average). So, for example, if I use California, it tells me that a gallon of regular gasoline costs $3.99 and that my eGallon costs $1.53.

But my average mileage over the life of my vehicle is 50.86 m.p.g. At my most recent fill up I paid $4.059/gallon. I'll use the Nissan Leaf for a comparison, the vehicles are broadly similar in important ways. Each has a Cd (drag coefficient) of 0.29 and, while the frontal area of the CT200h is a bit larger, the Leaf weighs more. The Leaf is rated by the EPA to consume 29 kWh/100 miles for the 2013 model year.

So, on a gallon of fuel, I go 50.86 miles. The Leaf would need (50.86/100)*29 kWh = 14.75 kWh to go that distance. If I assume that the charging system is 85% efficient, I'd pay for 14.75/.85=17.35 kWh. On my most recent electric bill I paid $0.1611/kWh for electricity above the "basic lifeline" rate, so these 17.35 kWh would cost me $2.80 and that's the price of my eGallon. Quite a difference between that number and $1.53, the "true" number is 83% higher whereas the number for my gasoline cost is not far away from what I actually pay. The computed eGallon price would be even further from ReGallon cost ("Rob's eGallon") if DOE had used the 2013 model year numbers for the Leaf in lieu of previous years' 34kWh/100 miles. If I use the 2013 model year number for the Leaf and the EPA combined estimate (42 m.p.g.) for the Lexus CT200h that I drive, an eGallon would cost $2.31, only 51% higher than the site's number.

You can read about their methodology here. The confounding factors are the actual cost of electricity and the fuel economy utilized for the ICE (internal combustion engine) vehicle. For reference, the plot below (you can click it to enlarge and be able to read the numbers) shows an AeGallon ("actual eGallon") for a range of actual fuel economies from 12 m.p.g. (the driver currently in a vehicle getting less than that is not a likely candidate for an EV) to 70 m.p.g. (a hypermiler in a Prius). For this plot, I'll use the same electricity consumption as the DOE site uses, i.e., 35 kWh/100 miles, a blended rate from 5 top selling EVs. Electricity prices on the plot range from $0.09 to $0.20 per kWh. You can calculate your number yourself, it's as simple as 0.4118*(m.p.g.)*(electricity cost per kWh). You'll note that, for combinations of high mileage vehicles and expensive electricity, the eGallon may be more expensive than a gGallon (i.e., a gallon of gasoline).

On the plot, the "front" axis is m.p.g. for the vehicle being replaced with an EV, the rearward extending axis is the price of a kilowatt hour of electricity, and the vertical axis is the price of an eGallon in dollars. You can see that, for low mileage vehicles being replaced, the eGallon is quite inexpensive, regardless of electricity costs. But as replaced vehicle fuel economy climbs, the eGallon becomes much more expensive. The DOE site simply uses a single fleet average fuel economy (28.2 m.p.g.) and does not correct for the 85% charging efficiency I estimated.