The "poster" claim is that charging stations will enable the 500 maximum mile range truck to charge sufficiently for a 400 mile range in 30 minutes. In my first Tesla truck post I estimated that the battery pack capacity to enable a range of 500 miles would need to be about 1,145 kWh (kilowatt hours) so 400 miles would need about 915 kWh. To deliver this energy in 30 minutes requires power to be delivered at 1,830 kilowatts, that is, 1.83 mW (megawatts). And battery charging isn't 100% efficient, so we'll say 90%. Now we need to deliver energy at a rate of just over 2 megawatts!
The current inventory of Tesla Superchargers for the Models X, S, and 3 deliver energy at a rate of up to 140 kW, about 8% of the required power for a "Megacharger" for the 30 minute/400 mile charge for a Tesla semi. Now, Elon Musk has hinted on Twitter of much higher charging rates, hinting that the megacharger's rate will be far in excess of 350 kW.
Elsewhere, rates on the order of 1.6mW are discussed in the main article here, and the comments are interesting as well. There is discussion of the solar charging aspect, even to the extent of putting solar panels on the roofs of the trailers to be hauled by the semi, something that I may take up in a subsequent post.
There are several concerns with respect to delivering energy at the rate of 2 mW. First, what will such a charge actually cost?Second, how will such power be delivered given that multiple trucks will be charging simultaneously? Third, will a battery pack hold up under such charging rates, presumably applied on a daily basis?
While the first question might seem like a no-brainer advantage for the Tesla, we'll take a look anyway. It's true that, at about 2 kWh/mile and a typical industrial rate of $0.0692/kWh, the implied rate of about $0.14/mile for energy looks very favorable in comparison to 1/7 of a gallon of diesel at $2.93/gallon yielding $0.42/mile. But the infrastructure for delivering diesel fuel to trucks is long since built out and the capital costs fully recovered. The Tesla megachargers are merely hypothesized, not built out and paid for. Unfortunately, I have no idea what Elon Musk has in mind with respect to what he'll build, where he'll build it, and how he'll recover its costs. He does say, in his introductory video, that there are "guaranteed low electricity rates for Tesla." But, one way or another, the infrastructure will have to be paid for. Call it a wild card.
What about question number two? Musk has mentioned solar power for the megacharger stations, but that doesn't necessarily imply a solar roof over a few acres at every truck stop. It could just as easily mean offsetting grid supplied electricity at truck stops with solar electricity offsets at favorable locations. Musk makes somewhat contradictory statements when he discusses recharging at destinations while trucks unload and/or at the truck's base while loading. Whether he's discussing a megacharger at such locations (so that the truck owner would own or lease the charger) or whether he's discussing standard charging isn't clear.
He also discusses being able to take the trucks "anywhere in the world," implying that charging facilities will be ubiquitous. Again, whether all of these facilities would be megachargers isn't made clear. Another possibility would be having a premium charge for the megacharger. Again, details aren't available. Thus, I have insufficient information to speculate in detail.
But I do have to look at one aspect. Here, we find that something like two million tractor trailers are registered in the US. I'll just speculate (really, guess, though I hate guessing) that something like 1.5 million are actively earning money for their owners by hauling freight. I'll also use the estimation that each such truck drives about 45,000 miles per year.
Now, if Tesla were to replace 10% of the semi truck fleet, their trucks would travel 45,000 * 150,000 or 6.75 billion miles/year. At 2 kWh/mile, they'd use 13.5 billion kWh or 13.5 gWh (gigawatt hours)/year of electrical energy. As an aside, this rate represents an average power of a bit over 1.5 mW, though the rate will obviously vary hugely. Nevertheless, this hardly seems like a large strain on the US electrical grid. Discovery Network's Science Channel is currently replaying all of the Mythbusters episodes from the original crew's 14 seasons so I'll echo their nomenclature and call it "PLAUSIBLE."
Both for the reason that this post is already plenty long and the reason that I'm still doing some reading on the effects of consistent extremely high charge rates on Li ion batteries, I'll defer to a subsequent post on that topic and end this post here.
No comments:
Post a Comment