It features Pavegen, a Company I've looked at before. The concept is the installation of tiles that, when stepped on, deflect and thereby produce electricity via the piezoelectric effect. Does such an effect exist and can electricity be produced in this fashion? Yes and yes. Can the electricity generated thereby be useful in some circumstances? Again, yes. Is this an efficient and effective way to "Transform Tomorrow?" That would be a "no."
Amazingly, Pavegen's CEO, Laurence Kemball-Cook, actually says (and the article duly repeats) that the Pavegen tiles can "produce up to 7 watts of energy with each step." Of course, watts are not units of energy, they are a rate of doing work or converting energy. Kimball-Cook repeats that and, in this TEDx talk, even says "eventually, our vision is that this technology power our cities." This is, frankly, ridiculous and I intend to ridicule it.
The claim is that a single step generates up to "7 watts of energy" (despite the unit confusion, we can infer what they are really claiming if we make some estimates). I went to Vernier's site where student laboratory measurement, data gathering, and analysis equipment is sold and interesting experiments are described. One of the "Innovative Uses" experiments described was called "Walking Biomechanics Using a Force Plate." There, sufficient data is provided (I'll leave out the calculation details unless requested to add them) to determine that the claim of "up to 7 watts" is not ridiculous, though I'd estimate that a bit under 5 watts is more likely a good average. But we don't care about watts, we care about energy so, based on the data at the Vernier site, the approximately 700 Nt. applied through 0.005 meters over a period of about 0.74 seconds results in kinetic energy delivered to the tile of about 3.5 joules/footfall. This is somewhat confirmed by Pavegen in their graph (at left) of their own office where we can infer that a bit under 250,000 steps produced a bit under 500 watt hours. This translates to about 7.2 joules/footfall. Close enough.
Since there are 3.6 million joules per kilowatt hour, we can say that it would take right at a million steps to generate a kilowatt hour of energy, and that assumes that the piezoelectric system is 100% efficient at converting kinetic energy to electrical energy. Actual data on this efficiency is sparse at best, particularly for those, such as I, who are unwilling to spend $30 to retrieve an article from behind a paywall that may or may not have the information that I want in order to complete a blog post. Nevertheless, I was able to find this document, where it appears that a conversion efficiency of maybe 2.4% can be achieved (yes, you read that correctly).
Thus, our 3.5 joules/footfall is reduced to 0.088 joules/footfall, requiring something on the order of 41,000,000 footfalls to generate a kilowatt hour. I have to say that it seems likely that I'm missing something here. Possibly, 2.4% conversion efficiency is much lower than what these tiles achieve, though I can't find any data that indicates that significantly higher efficiencies have been demonstrated in a laboratory environment. And, in the Wikipedia article on Pavegen, it's stated that "the exact technology is a secret, but PaveGen officials have said it involves the piezoelectric effect and induction by copper coils and magnets."
So it's possible that Pavegen is using something more efficient, so I'll use an upper bound of 3.5 joules/footfall as described above. Here, in an article from Urban Times with a healthy degree of skepticism and yet also open-mindedness, figures from the City of Westminster regarding Oxford Street are cited. Looking there, it's stated that there's an estimated 4.3 million people per week using the street. Urban Times discusses 10 tiles on Oxford Street. So 4.3 million/7 is 614,000 people per day. If they each hit all 10 tiles, the upper bound would be 614,000*10*3.5=21,500,000 joules or just shy of 6 kilowatt hours.
Quoting from the Urban Times article, Pavegen states that
"the pressure of a single footstep creates 4 to 8 watts. It was also calculated that assuming 8 watts is created per step, “during peak hours, one tile produces 12kWh ideally [and] during the off hours, it produces 5kWh ideally” and that “floor tiles, during peak hours will be stepped on 926-1889 times per hour… and 0-719 times during off hours… which works out to about 56 kWh per weekday”.I can't find that quote from Pavegen, but if it's an accurate quotation, it would imply about 57 million footfalls per weekday. Hmm, I doubt it.
Then, there's the fact that any energy harvested by the Pavegen system is parasitic in nature, in that it's generated by a human converting food energy to kinetic energy. Whatever energy is harvested and wasted by a Pavegen tile is energy above and beyond what the people walking on the tile would otherwise have to exert. It doesn't come from nowhere and it isn't free.
There is likely a place for human generated electricity. As Kemball-Cook points out, there's no need to have the users of gyms merely generate heat on their treadmills, stair climbers, elliptical exercisers, etc. Such folk are going there for the express purpose of burning food energy without a destination or other goal. Such energy might just as well be harvested and, in many cases, it is.
These distractions that allow politicians to have green photo ops and people to get a warm fuzzy feeling about saving the Earth from some oversold "green energy" scheme do much more harm than good. The drastic changes in how we need to live in order to achieve equilibrium with what our planet and our sun can sustainably provide are only put off when people buy into such schemes.
Let Steve Earle describe Pavegen.
1 comment:
CNN's decline is really sad if you consider how good they used to be. Thanks for doing the checking that their own staff should have done.
The reality is that if all of us viewers use the stairs instead of elevator once a week, it will save more energy than those bogus tiles. And also improve our health.
But you will not hear that message on CNN.
Post a Comment