As mentioned repeatedly, I'm a frequenter of a web site devoted to maximizing fuel efficiency through all available techniques. These include the operational techniques I've implemented in my driving as well as minor and major modifications to vehicles. It's a wonderful site, occupied by people with a variety of philosophies.

Mine is to minimize both my cost per mile, and my overall fuel expenditures (given the fuel hog that I drive). But there are others whose goal is to maximize the miles per gallon irrespective of other considerations. Doesn't their goal assure my goal? It doesn't. Many of these hypermilers will choose a longer route if they can achieve higher miles per gallon, even if that route entails sufficient extra mileage to cause an overall increase in fuel consumed. In other words, these hypermilers treat maximizing the miles per gallon realized as something of a sport.

Is there anything wrong with this? Of course not. As the saying goes, "ya pays your money and ya takes your choice." Certainly, these men and women (mostly men) are not using huge amounts of gasoline to make these choices. I suspect that most, if not all, of them use less fuel than I do over the course of a year. And their efforts are communicated to the group, thus giving those of us who seek to minimize total costs additional data.

So what, in my efforts, controls the overall expenditures on gasoline? Two things are key: miles driven and gasoline price per gallon. Note that miles per gallon achieved are conspicuously absent. It's much easier to save on gasoline costs by driving less and by purchasing cheaper gasoline than by utilizing economy maximizing driving techniques.

Lest people conclude that driving technique matters little, I need to clarify. After purchasing my Land Rover LR3 HSE, I attempted to use the techniques that were effective in my Jeep Grand Cherokee Limited. I found that it was difficult to exceed the E.P.A. estimates and that I was hard pressed to make much difference. This led me to drive the LR3 "normally," that is, as most would drive it. As gasoline ran through $3.00, then $4.00 per gallon I redoubled my efforts. It did make a difference, and if one considers the graph of Cost per Mile as a function of Gasoline Price, it literally separates into two distinct data sets. And the average mileages during each of these phases stand at 16.3 and 20.9 respectively.

And actually, that underestimates what can be done, since the "before" data includes my earliest efforts at trying to save fuel in the LR3 and thus is higher than "normal," and the "after" data is significantly higher in the later fill ups, as I refine technique.

But for the "after" data plotted alone with Cost per Mile as a Function of Cost per Gallon, the so-called "coefficient of determination" is greater than 0.81. In other words, more than 80% of my cost per mile is determined by what I pay for fuel, my nibbling around the edges with driving technique accounts for some of the remainder, and the nature of the driving during the tank full (stuck in traffic, city driving, pure freeway driving, etc.), and other random factors account for the rest.

Thus, regardless of what else I do, I'll leave more money in my pocket if I drive fewer miles and buy cheaper fuel. It's a good thing I have a strong mathematics background, it serves me well in deep analyses such as this.

A look at energy use in my life and how it applies to others' lives

## Sunday, October 26, 2008

## Saturday, October 18, 2008

### Aero drag and rolling resistance at varying speeds

As I've brought up in many previous posts, the external forces to be overcome by my vehicle at speed are rolling resistance and aerodynamic drag. I've also mentioned that the aerodynamic drag increases with the square of speed, whereas rolling resistance is independent of speed. The latter contention will be, I suspect, debated by experts. I've read extensively and, though several authors contend that rolling resistance increases linearly with speed, I have found none that support that theory with data or analysis.

My admittedly simplistic evaluation revolves around dimensional analysis. While this topic is far too deep to cover in a blog post, I can at least mention the principle involved. In an equation, the units on the left side must be the same as the units on the right side. For example: distance=speed times time. Distance may be in miles, speed in miles per hour, and time in hours. So on the right side, miles per hour times hours is miles, the same as the left side. Physicists will say "length = speed times time" so that they can use miles, centimeters, inches, furlongs, leagues, or parsecs for length, etc. Thus, they deal with the dimension of length rather than the specific unit of miles, for example.

For our problem, we want to know what affects rolling resistance. Resistance on the left side of the equation we're seeking is a force, so we want to know how force is affected by various things that may be on the right side of the equation. Likely candidates for what might affect this force are vehicle weight and speed. So we look for a combination of the dimensions of weight and speed that result in a force. But weight is a force, so if we multiply it by any power of speed, we'll no longer have a force and the dimension on the right side will not result in a force. While dimensional agreement does not assure the correctness of an equation, lack of dimensional agreement assures its incorrectness.

Now, it's true that dimensional analysis cannot, alone, give the entire equation. It cannot account for constants, for dependence on exponential and trigonometric functions, etc. And the method is also highly dependent on the accurate physical intuition of the analyst in determining the factors that may affect the dependent variable. For example, in this case is tire diameter (a length) a possible factor? Inflation pressure? How about bulk modulus of tire rubber? Certainly these could be factors, but a more thorough dimensional analysis indicates that, at least without taking even more arcane factors into account, they are not. For the physicists and automotive engineers reading this, I recognize that this is very simplistic and yet, to the accuracy possible by reading speedometers, odometers, and gas pumps, I believe it represents a valid analysis.

So, we have F[total]=.5*p*C[drag]*A*v^2+C[rolling]*W where F[total]is total external force on my vehicle, p is air density, C[drag] is the coefficient of drag, A is the flat plate area, v is speed, and C[rolling] is the coefficient of rolling resistance. This can be written as a quadratic equation in v, or F[total]=k*v^2+d where k=.5*p*C[drag]*A and d=C[rolling]*(weight). Using a typical value for air density and the other values for my Land Rover LR3 HSE, k=.775 and d=393. So we have F[total]=0.775*v^2+393.

From there, I can produce a graph that shows the fraction of resistive force from rolling resistance and aerodynamic drag at each speed. Below is a plot of each component of resisting force. The aerodynamic drag is the red plot, the blue is rolling resistance. They are equal at about 22.5 meters/second or approximately 50 m.p.h. I took the graph to 40 meters/second, or about 90 m.p.h. (though that speed is irrelevant to me because I never drive that fast).

My admittedly simplistic evaluation revolves around dimensional analysis. While this topic is far too deep to cover in a blog post, I can at least mention the principle involved. In an equation, the units on the left side must be the same as the units on the right side. For example: distance=speed times time. Distance may be in miles, speed in miles per hour, and time in hours. So on the right side, miles per hour times hours is miles, the same as the left side. Physicists will say "length = speed times time" so that they can use miles, centimeters, inches, furlongs, leagues, or parsecs for length, etc. Thus, they deal with the dimension of length rather than the specific unit of miles, for example.

For our problem, we want to know what affects rolling resistance. Resistance on the left side of the equation we're seeking is a force, so we want to know how force is affected by various things that may be on the right side of the equation. Likely candidates for what might affect this force are vehicle weight and speed. So we look for a combination of the dimensions of weight and speed that result in a force. But weight is a force, so if we multiply it by any power of speed, we'll no longer have a force and the dimension on the right side will not result in a force. While dimensional agreement does not assure the correctness of an equation, lack of dimensional agreement assures its incorrectness.

Now, it's true that dimensional analysis cannot, alone, give the entire equation. It cannot account for constants, for dependence on exponential and trigonometric functions, etc. And the method is also highly dependent on the accurate physical intuition of the analyst in determining the factors that may affect the dependent variable. For example, in this case is tire diameter (a length) a possible factor? Inflation pressure? How about bulk modulus of tire rubber? Certainly these could be factors, but a more thorough dimensional analysis indicates that, at least without taking even more arcane factors into account, they are not. For the physicists and automotive engineers reading this, I recognize that this is very simplistic and yet, to the accuracy possible by reading speedometers, odometers, and gas pumps, I believe it represents a valid analysis.

So, we have F[total]=.5*p*C[drag]*A*v^2+C[rolling]*W where F[total]is total external force on my vehicle, p is air density, C[drag] is the coefficient of drag, A is the flat plate area, v is speed, and C[rolling] is the coefficient of rolling resistance. This can be written as a quadratic equation in v, or F[total]=k*v^2+d where k=.5*p*C[drag]*A and d=C[rolling]*(weight). Using a typical value for air density and the other values for my Land Rover LR3 HSE, k=.775 and d=393. So we have F[total]=0.775*v^2+393.

From there, I can produce a graph that shows the fraction of resistive force from rolling resistance and aerodynamic drag at each speed. Below is a plot of each component of resisting force. The aerodynamic drag is the red plot, the blue is rolling resistance. They are equal at about 22.5 meters/second or approximately 50 m.p.h. I took the graph to 40 meters/second, or about 90 m.p.h. (though that speed is irrelevant to me because I never drive that fast).

Subscribe to:
Posts (Atom)